Abstract
We consider a multitype branching random walk with independent Poisson random fields of each type of particle initially. The existence of limiting random fields as the generation number, is studied, when the intensity of the initial field is renormalized in such a way that the mean measures converge. Spatial laws of large numbers and central limit theorems are given for the limiting random field, when it is non-trivial.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability