Author:
Gravereaux Jean-Bernard,Ledoux James
Abstract
In this paper, we consider a failure point process related to the Markovian arrival process defined by Neuts. We show that it converges in distribution to a homogeneous Poisson process. This convergence takes place in the context of rare occurrences of failures. We also provide a convergence rate of the convergence in total variation of this point process using an approach developed by Kabanov, Liptser and Shiryaev for the doubly stochastic Poisson process driven by a finite Markov process.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability