Author:
Lautensack Claudia,Zuyev Sergei
Abstract
A systematic study of random Laguerre tessellations, weighted generalisations of the well-known Voronoi tessellations, is presented. We prove that every normal tessellation with convex cells in dimension three and higher is a Laguerre tessellation. Tessellations generated by stationary marked Poisson processes are then studied in detail. For these tessellations, we obtain integral formulae for geometric characteristics and densities of the typical k-faces. We present a formula for the linear contact distribution function and prove various limit results for convergence of Laguerre to Poisson-Voronoi tessellations. The obtained integral formulae are subsequently evaluated numerically for the planar case, demonstrating their applicability for practical purposes.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献