Metaheuristic data fitting methods to estimate Weibull parameters for wind speed data: a case study of Hasan Polatkan Airport

Author:

Kaba A.ORCID,Suzer A. E.

Abstract

ABSTRACTFlight delays may be decreased in a predictable way if the Weibull wind speed parameters of a runway, which are an important aspect of safety during the take-off and landing phases of aircraft, can be determined. One aim of this work is to determine the wind profile of Hasan Polatkan Airport (HPA) as a case study. Numerical methods for Weibull parameter determination perform better when the average wind speed estimation is the main objective. In this paper, a novel objective function that minimises the root-mean-square error by employing the cumulative distribution function is proposed based on the genetic algorithm and particle swarm optimisation. The results are compared with well-known numerical methods, such as maximum-likelihood estimation, the empirical method, the graphical method and the equivalent energy method, as well as the available objective function. Various statistical tests in the literature are applied, such as R2, Root-Mean-Square Error (RMSE) and $\chi$2. In addition, the Mean Absolute Error (MAE) and total elapsed time calculated using the algorithms are compared. According to the results of the statistical tests, the proposed methods outperform others, achieving scores as high as 0.9789 and 0.9996 for the R2 test, as low as 0.0058 and 0.0057 for the RMSE test, 0.0036 and 0.0045 for the MAE test and 3.53 × 10−5 and 3.50 × 10−5 for the $\chi$2 test. In addition, the determination of the wind speed characteristics at HPA show that low wind speed characteristics and regimes throughout the year offer safer take-off and landing schedules for target aircraft. The principle aim of this paper is to help establish the correct orientation of new runways at HPA and maximise the capacity of the airport by minimising flight delays, which represent a significant impediment to air traffic flow.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference72 articles.

1. [51] Kiran, D.R. Reliability Engineering, in Total Quality Management: Key Concepts and Case Studies, Kiran, D.R. (Ed.), Amsterdam, Boston: Elsevier, 2017, pp 391–404.

2. An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution

3. Aircraft trim analysis by particle swarm optimization;Gümüşboğa;J Aeronaut Space Technol,2019

4. [56] Technical University of Denmark. Global Wind Atlas 3.0: Web-Based Application.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3