Measuring battery discharge characteristics for accurate UAV endurance estimation

Author:

Mariga L.,Silva Tiburcio I.,Martins C.A.ORCID,Almeida Prado A.N.,Nascimento C.

Abstract

ABSTRACTThe increasing use of unmanned aerial vehicles in areas such as rescue, mapping, and transportation have made it necessary to study more accurate techniques for calculating flight time estimates. Such calculations require knowing the battery discharge profile. Simplified flight time calculation methods provide data with uncertainties as they are based solely on manufacturer datasheet information. This study presents a setup to measure the battery discharge curve using a LabVIEW interface with a low-cost acquisition system. The acquired data passes through a nonlinear optimisation algorithm to find the battery coefficients, which enables the more precise estimation of its range and endurance. The great advantage of this model is that it makes it possible to predict how the battery will discharge at different rates using just one experimental curve. The methodology was applied to three different batteries and the model was validated with different discharge rates in a controlled environment, which resulted in endurance lower than 3.0% for most conditions and voltage estimation error lower than 3.0% in operational voltage. The work also presented a methodology for estimating cruise time based on the current used during each flight stage.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3