Enhanced cruise range prediction for narrow-body turbofan commercial aircraft based on QAR data

Author:

Atasoy V.E.ORCID,Cetek C.

Abstract

ABSTRACTAircraft performance parameters play a critical role in maintaining economic and environmental sustainability in aviation. Furthermore, the ability to calculate aircraft performance parameters accurately for the cruise range contributes to aviation in areas such as the preliminary design of aircraft and air traffic management. This study is focused on cruise range performance, as this is critical to both the evaluation and understanding of the economic and environmental impacts of commercial aircraft. Quick Access Recorders (QAR) data were used for more accurate analysis of the cruise range. The QAR data used in this study included 6,574 short-distance domestic flights by narrow-body turbofan commercial aircraft between 31 different city pairs. To obtain a more accurate cruise range equation, parameters affecting the cruise range performance were determined and studied. First, the drag polar model was improved to take the cambered profile, compressibility effects and cruise airspeeds of commercial aircraft into consideration using the real flight data. Second, Thrust-Specific Fuel Consumption (TSFC) models were compared and the most suitable one for the cruise phase was selected. After these steps, cruise range values were calculated using the Breguet range equation with these improved parameters. When the results of this enhanced range model were compared with the real flight data, the mean absolute percentage error (MAPE) was found to be 2.5% for all the Aircraft and Engine Type Groups (AETGs) considered in the data. This figure corresponds to a 7.9% smaller error than provided by previous range models based on simple parabolic drag polar and TSFC models. According to these results, the application of a simple parabolic drag polar and TSFC is not appropriate for cruise range calculations.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference42 articles.

1. Aerodynamic Modeling and Parameter Estimation from QAR Data of an Airplane Approaching a High-altitude Airport

2. Mean Absolute Percentage Error for regression models

3. The impact of airline mergers and hub reorganization on aviation fuel consumption;Megan;J Clean Prod,2014

4. 2. IATA, The annual review 2019 report, 2019. Available at: https://www.iata.org/Contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2019.pdf (accessed 3 January 2020).

5. Synthesis of Subsonic Airplane Design

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Abnormal Flight and Controllers Data Based on DBSCAN Method;Security and Communication Networks;2022-05-27

2. A Data-driven Integrated Safety Risk Warning Model based on Deep Learning for Civil Aircraft;IEEE Transactions on Aerospace and Electronic Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3