Enabling robust and accurate navigation for UAVs using real-time GNSS precise point positioning and IMU integration

Author:

Chi C.ORCID,Zhan X.ORCID,Wang S.ORCID,Zhai Y.ORCID

Abstract

ABSTRACTAccurate navigation is required in many Unmanned Aerial Vehicle (UAV) applications. In recent years, GNSS Precise Point Positioning (PPP) has been recognised as an efficient approach for providing precise positioning services. In contrast to the widely used Real-Time Kinematic (RTK), PPP is independent of reference stations, which greatly broadens its scope of application. However, the accuracy and reliability of PPP can be significantly decreased by poor GNSS satellite geometry and outage. In response, a real-time four-constellation GNSS PPP is applied to improve the geometry in this work, and PPP is tightly coupled with an Inertial Measurement Unit (IMU) to smooth the position and velocity output, thus improving the robustness of the navigation solution. Experimental flight tests are carried out using a UAV in an open-sky area, and GNSS-challenged environments are simulated. The results show that the four-constellation GNSS PPP/IMU integration reduces the Root-Mean-Square (RMS) Three-Dimensional (3D) positioning and velocity error by 76.4% and 67.1%, respectively, in open sky with respect to the one-GNSS PPP. Under scenarios where GNSS measurements are insufficient, the coupled system can still provide continuous solutions. Moreover, the coupled PPP/IMU system can also maintain the convergence of PPP during GNSS-challenged periods and can greatly shorten the re-convergence period of PPP when the UAV returns to the open sky.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference24 articles.

1. [5] Kouba, J. and Hroux, P.J.G.S. Precise point positioning using IGS orbit and clock products, GPS Solut, October 2001, 5, (2), pp 12–28.

2. [9] Mireault, P.T.Y. , Lahaye, F. , Collins, P. , Caissy, M. and NrCan, . Real-time and near real-time GPS products and services from Canada, Presented at the IGS analysis center workshop 2008, Miami Beach, lorida, USA, June 2–6, 2008.

3. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks;Gezici;IEEE Sig Process Mag,2005

4. [8] Caissy, M. , Weber, G. , Agrotis, L. , Wübbena, G. and Hernandez-Pajares, Manuel . The IGS real-time pilot project the development of real-time IGS correction products for precise point positioning, Presented at the Presentations of the EGU11 Vienna, Austria, April 6, 2011.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3