Calculating block time and consumed fuel for an aircraft model

Author:

de Lemos F.ORCID,Woodward J.

Abstract

ABSTRACTIn this paper we present a novel approach to calculate Block Time and Fuel (BTF) consumed for an aircraft model during a flight. The BTF model computes the ground distance between the origin and destination airports, derives the flight’s cruise altitude and by integrating two institutional data sets calculates the duration and the fuel consumed for the whole of taxi-out, take-off, climb, cruise, descent, approach, landing and taxi-in phases. We use the French Association for Operational Research and Decision Support (ROADEF) 2009 Challenge flight rotation to sample our model. The statistical analysis of the results consisted of comparing BTF results for the block time and those from the ROADEF Challenge 2009 with the real ones retrieved from Flightaware® for the same origin and destination airports and aircraft model. Statistical results are reported for percentile and root mean square error, and we show that, using simple calculations, the BTF computational results for block time are in a lower percentile and have lower root mean square error than the block times used by the ROADEF 2009 Challenge. To compare the fuel consumed, we used the values for the real flights published in the literature review. We were able to verify a good fit between the BTF results and those values. Since the BTF model computational results are obtained within a few seconds, we also conclude that the BTF model is suited for flight planning and disruption recovery in commercial aviation.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of airworthiness examination model of civil aircraft based on big data;Third International Conference on Electronics, Electrical and Information Engineering (ICEEIE 2023);2023-10-27

2. Analytical Models for CO2 Emissions and Travel Time for Short-to-Medium-Haul Flights Considering Available Seats;Sustainability;2021-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3