The vibration suppression of solar panel based on smart structure

Author:

Ma G.ORCID,Xu M.,Tian J.,Kan X.

Abstract

ABSTRACTThis paper provides a solution to the active vibration control of a microsatellite with two solar panels. At first, the microsatellite is processed as a finite element model containing a rigid body and two flexible bodies, according to the principles of mechanics, and that the dynamic characteristics are solved by modal analysis. Secondly, the equation involving vibration control is established according to the finite element calculation results. There are several actuators composed of macro fibre composite on the two solar panels for outputting control force. Furthermore, the control voltage for driving actuator is calculated by using fuzzy algorithm. It is clear that the smart structure consists of the flexible bodies and actuators. Finally, the closed-loop control simulation for suppressing harmful vibration is established. The simulation results illustrate that the responses to the external excitation are decreased significantly after adopting fuzzy control.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference15 articles.

1. Active vibration control of an axially translating robot arm with rotating-prismatic joint using self-sensing actuator;Zhao;Shock Vibr,2015

2. Flexural vibration control of the circular handlebars of a bicycle by using MFC actuators;Ro;J Vibr Control,2007

3. An investigation on dynamic signals of MFC and PVDF sensors: Experimental work;Sohn;Adv Mech Eng,2015

4. Finite element analysis of the macro fiber composite actuator: macroscopic elastic and piezoelectric properties and active control thereof by means of negative capacitance shunt circuit;Steiger;Smart Mater Struct,2015

5. 14. Bent, A. Active fiber composite material systems for structural control applications, Proceedings, SPIE’s 6th International Symposium on Smart Structures and Materials, Newport Beach, CA, March 1–5 1999, SPIE 3674.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3