Coordinated control of fuel flow rate and air flow rate of a supersonic heat-airflow simulated test system

Author:

Cai C.ORCID,Guo L.,Liu J.

Abstract

ABSTRACTThe gas temperature of the supersonic heat airflow simulated test system is mainly determined by the fuel and air flow rates which enter the system combustor. In order to realise a high-quality control of gas temperature, in addition to maintaining the optimum ratio of fuel and air flow rates, the dynamic characteristics of them in the combustion process are also required to be synchronised. Aiming at the coordinated control problem of fuel and air flow rates, the mathematical models of fuel and air supply subsystems are established, and the characteristics of the systems are analysed. According to the characteristics of the systems and the requirements of coordinated control, a fuzzy-PI cross-coupling coordinated control strategy based on neural sliding mode predictive control is proposed. On this basis, the proposed control algorithm is simulated and experimentally studied. The results show that the proposed control algorithm has good control performance. It cannot only realise the accurate control of fuel flow rate and air flow rate, but also realise the coordinated control of the two.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Low Temperature Drift Suppression of Micro-Machined Gyroscope Based on Self-Calibration Technology;Journal of Nanoelectronics and Optoelectronics;2024-01-01

2. Study on the Decoupling Control Strategy of the Airflow Temperature Control System;2023 9th International Conference on Fluid Power and Mechatronics (FPM);2023-08-18

3. Design of Sliding Mode Controller Based on 7 nm Gate Logic;Journal of Nanoelectronics and Optoelectronics;2023-08-01

4. Switching Power Supply Control Strategy Based on Monitoring Configuration;Journal of Nanoelectronics and Optoelectronics;2021-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3