Author:
Chen Xi,Banks David,West Mike
Abstract
AbstractIn the context of a motivating study of dynamic network flow data on a large-scale e-commerce website, we develop Bayesian models for online/sequential analysis for monitoring and adapting to changes reflected in node–node traffic. For large-scale networks, we customize core Bayesian time series analysis methods using dynamic generalized linear models (DGLMs). These are integrated into the context of multivariate networks using the concept of decouple/recouple that was recently introduced in multivariate time series. This method enables flexible dynamic modeling of flows on large-scale networks and exploitation of partial parallelization of analysis while maintaining coherence with an over-arching multivariate dynamic flow model. This approach is anchored in a case study on Internet data, with flows of visitors to a commercial news website defining a long time series of node–node counts on over 56,000 node pairs. Central questions include characterizing inherent stochasticity in traffic patterns, understanding node–node interactions, adapting to dynamic changes in flows and allowing for sensitive monitoring to flag anomalies. The methodology of dynamic network DGLMs applies to many dynamic network flow studies.
Publisher
Cambridge University Press (CUP)
Subject
Sociology and Political Science,Communication,Social Psychology
Reference40 articles.
1. Gravity Models of Spatial Interaction Behavior
2. Intervention and Causality: Forecasting Traffic Flows Using a Dynamic Bayesian Network
3. West, M. (1994). Statistical inference for gravity models in transportation flow forecasting. Discussion Paper 94-20, Duke University, and Technical Report #60, National Institute of Statistical Sciences.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献