Author:
McManus D. P.,Smyth J. D.
Abstract
SUMMARYWith few exceptions, the specific activities of the glycolytic enzymes and the steady-state content of glycolytic and associated intermediates in protoscoleces of the horse (E.g.H) and sheep (E.g.S) strains ofEchinococcus granulosusand the closely relatedE. multilocularis(E.m.) are very similar. Phosphorylase, hexokinase, phosphofructokinase and pyruvate kinase catalyse non-equilibrium reactions and the patterns of activity for pyruvate kinase, phosphoenolpyruvate carboxykinase and malic enzyme are similar in the three organisms. The levels of tricarboxylic acid cycle intermediates inE.g.H., E.g.S. andE.m. are of the same order as those reported in tissues with an active cycle. Each has a complete sequence of cycle enzymes but there are substantial differences between the three parasites with regard to the activity of individual enzymes, The activities of NAD and NADP-linked isocitrate dehydrogenases are significantly lower inE.g.H. than inE.g.S. and particularly inE.m. which suggests that the tricarboxylic acid cycle may play a more important role in carbohydrate metabolism and energy production in the latter parasites. Nevertheless, the three organisms utilize fermentative pathways for alternative energy production, fix carbon dioxide via phosphoenolpyruvate carboxykinase and have a partial reversed tricarboxylic acid cycle. It is speculated thatin vivomore carbon will be channelled towards oxaloacetate than pyruvate at the phosphoenolpyruvate branch point. The steady state content of ATP and the ATP/AMP ratios are low in the three organisms, suggesting a low rate of ATP utilization in each.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献