Megasomes as the targets of leucine methyl ester inLeishmania amazonensisamastigotes

Author:

Antoine J.-C.,Jouanne Colette,Ryter Antoinette

Abstract

SUMMARYCertain L-amino acid esters, such as L-leucine methyl ester (Leu-OMe), can kill intracellular and isolatedLeishmania amazonensisamastigotes. Killing appears to involve ester trapping and hydrolysis within an acidified parasite compartment (M. Rabinovitch and S. C. Alfieri, 1987,Brazilian Journal of Medical and Biological Research20, 665–74). We show here by acid phosphatase light microscopic cytochemistry and by ultrastructural morphometry that megasomes, lysosome-like amastigote organelles, are the putative parasite targets of Leu-OMe. This conclusion is supported by the following observations, (a) Control amastigotes displayed a string of electron-dense, acid phosphatase-positive megasomes mostly located in the cellular poles opposite the flagellar pockets. Incubation of the amastigotes with Leu-OMe resulted in concentration-dependent swelling and fusion of the organelles as well as decreased electron density of the internal contents. These changes, which preceded parasite disruption, were followed by the progressive loss of parasite viability and the release of acid phosphatase activity into the medium, (b) Incubation of the amastigotes with L-isoleucine methyl ester, a non-leishmanicidal compound, induced only moderate fusion of the megasomes. (c) Pre-incubation of the parasites with the proteinase inhibitors antipain and chymostatin, previously shown to confer protection from Leu-OMe toxicity, nearly completely prevented the morphological changes of megasomes. (d) Exposure of amastigotes to tryptophanamide (Trp-NH2), the leishmanicidal activity of which is not reduced by antipain and chymostatin, did not result in swelling and fusion of the megasomes. This last finding suggests that different mechanisms underlie the destruction of amastigotes by Trp-NH2 and Leu-OMe. Overall, the results are compatible with the hypothesis that Leu-OMe and other amino acid esters are trapped and hydrolysed within megasomes.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3