Histochemical mapping of NADPH diaphorase in the nervous system of the parasitic nematode Ascaris suum

Author:

Bascal Z. A.,Montgomery A.,Holden-Dye L.,Williams R. G.,Walker R. J.

Abstract

SUMMARYNADPH diaphorase has recently been discovered to be responsible for neuronal nitric oxide (NO) synthase activity in mammals. It thus serves as a histochemical marker for the localization of NO synthase in the nervous system. The histochemical technique was used to map out potential NO-producing neurones in the nervous system of the parasitic nematode, Ascaris suum. Positive staining for NADPH diaphorase was present in various parts of the central nervous system, in particular within selective cell bodies and fibres in the ventral ganglion, the retrovesicular ganglion, ventral and dorsal cords and sublateral lines. Intense staining was also present in the motorneurone commissures, indicating a potential role for NO as a neurotransmitter at the neuromuscular junction. NADPH disphorase-positive neurones were not confined to the central nervous system. Selective staining was also present in the enteric nervous system, in particular the pharynx and in the peripheral nervous system innervating the sensory organs.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3