A review of the population biology and host–parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae)

Author:

TULLY O.,NOLAN D. T.

Abstract

Lepeophtheirus salmonis is a specific parasite of salmonids that occurs in the Atlantic and Pacific Oceans. When infestations are heavy fish mortality can occur although the factors that are responsible for causing epizootics, especially in wild salmonid populations are still largely unknown. Over the past 20 years this parasite has caused significant economic losses in farmed salmon production and possibly in wild salmonid populations locally. Understanding the connectivity between populations is crucial to an understanding of the epidemiology of infections and for management of infections in aquaculture. Data from genetics, pesticide resistance, larval dispersal models and spatial and temporal patterns of infestation in wild and farmed hosts suggests a spatially highly structured metapopulation the components of which have different levels of connectivity, probabilities of extinction and influence on the development of local infestations. The population structure is defined mainly by the dispersal dynamics of the planktonic stages and the behaviour of the host.Until recently virtually nothing was known about the relationship between the parasite and the host, or how the host may influence lice at local or population level. Typically, impacts on the host have usually been reported in terms of pathological lesions caused by attachment and feeding of the adult stages, as well as localised mild epithelial responses to juvenile attachment. However many studies report pathology associated with severe infestation. Recent new studies on the host–parasite interactions of L. salmonis have shown that this parasite induces stress-related responses systemically in the host skin and gills and that the stress response and immune systems are modulated. In the second part of this review, these new studies are presented, together with results from other host–parasite model systems where data for caligid sea lice are missing. One of the most revealing methods reported recently is the application of a net confinement stressor to examine modulation of the stress response and immune system of the host fish. This approach has shown that although until now, infective stages of L. salmonis were not thought to affect the host, they do induce systematic effects in the host that result in a stress response and modulated immune system. Host–parasite interactions affecting these stress responses and the immune system may be key factors in facilitating epizootics by reducing the host's ability to reject the parasites, as well as reducing disease resistance under some environmental conditions. The host–parasite interaction therefore needs to be incorporated into any model of population structure and dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3