Author:
BAYNE C. J.,HAHN U. K.,BENDER R. C.
Abstract
In parallel with massive research efforts in human schistosomiasis over the past 30 years, persistent efforts have been made to understand the basis for compatibility and incompatibility in molluscan schistosomiasis. Snail plasma contains molecules that are toxic to trematodes, but these seem to kill only species that never parasitize the mollusc used as the source of plasma. A sporocyst will be killed actively by haemocytes alone if they are from a snail that is resistant to the trematode. Oxygen-dependent killing mechanisms play a major role. Enzymes such as NADPH oxidase, superoxide dismutase, myeloperoxidase and nitric oxide synthase are critical components of the putative killing pathways. Metabolic intermediates such as hydrogen peroxide and nitric oxide appear to be more important against trematodes than the shorter-lived intermediates that are more important in anti-microbial defences. Products secreted by trematode larvae influence the physiology of snail haemocytes, implying active counter-defences mounted by the parasite, but these remain largely unexplored. A possible molecular basis for the susceptibility/resistance dichotomy in molluscan schistosomiasis is suggested to be deficient forms of enzymes in the respiratory burst pathway, and a selective disadvantage for schistosome resistance is an integral component of this model.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献