A general model for the African trypanosomiases

Author:

Rogers D. J.

Abstract

SUMMARYA general mathematical model of a vector-borne disease involving two vertebrate host species and one insect vector species is described. The model is easily extended to other situations involving more than two hosts and one vector species. The model, which was developed from the single-host model for malaria described by Aron & May (1982), is applied to the African trypanosomiases and allows for incubation and immune periods in the two host species and for variable efficiency of transmission of different trypanosome species from the vertebrates to the vectors and vice versa. Equations are derived for equilibrium disease prevalence in each of the species involved. Model predictions are examined by 3-dimensional phase-plane analysis, which is presented as a simple extension of the 2-dimensional phase-plane analysis of the malaria model. Parameter values appropriate for the African trypanosomiases are derived from the literature, and a typical West African village situation is considered, with 300 humans, 50 domestic animals and an average population of 5000 tsetse flies. The model predicts equilibrium prevalences of Trypanosoma vivax, T. congolense and T. brucei of 47·0, 45·8 and 28·7% respectively in the animal hosts, 24·2, 3·4 and 0·15% in the tsetse vectors, and a 7·0% infection of humans with human-infective T. brucei. The contribution to the basic rate of reproduction of the human-infective T. brucei is only 0·11 from the human hosts and 2·54 from the animal hosts, indicating that in the situation modelled human sleeping sickness cannot be maintained in the human hosts alone. The animal reservoir is therefore crucial in determining not only the continued occurrence of the disease in humans, but its prevalence in these hosts as well. The effect of changing average fly density on equilibrium disease prevalences is examined, together with the effect of seasonal changes in fly numbers on disease incidence. In a seasonal situation changes in fly mortality rates affect both future population size and infection rate. Peak disease incidence lags behind peak fly numbers, and that in the less favoured host lags behind that in the more favoured host. Near the threshold fly density for disease transmission disease incidence is more changeable than at higher fly densities and may even exceed equilibrium prevalence at the same average fly density (because most hosts are susceptible at the time that fly numbers begin their annual increase). The implications of the model for disease control are discussed. Identifying the precise role of the animal reservoir may suggest that treating such animals will achieve a greater reduction of human sleeping sickness than direct treatment of the humans alone. Statistically significant results of control campaigns may also be more easily shown by monitoring the non-human reservoirs. The model provides a means by which a correct perspective view can be obtained of the complex epidemiology and epizootiology of the African trypanosomiases.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference54 articles.

1. W.H.O. (1986). Epidemiology and control of African trypanosomiasis. Report of a W.H.O. Expert Committee. W.H.O. Technical Report Series, no. 739. Geneva: World Health Organization.

2. A study on the transmission of salivarian trypanosomes isolated from wild tsetse flies

3. An observation on the unexpected frequency of some multiple infections;Willett;Bulletin of the World Health Organization,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3