B-chromosomes: germ-line parasites which induce changes in host recombination

Author:

Bell G.,Burt A.

Abstract

The object of this paper is to suggest that there may be an unexpected connexion between parasites and the evolution of sex, using for illustration an unfamiliar type of parasite, the selfish chromosome. The major intellectual challenge of sexuality is to an environment which is continually getting worse. The elegant solution given by the Red Queen theory (Levin, 1975; Hamilton, 1980; Bell, 1982; Bell & Maynard Smith, 1988) is that the relevant aspect of the environment is provided by antagonists—pathogens, predators and competitors—which, because they can respond adaptively so as to negate any improvement that has been made, provide a constant stimulus for continued evolution. Sexuality and recombination are favoured because some of the new combinations of genes which they create are resistant to the current population of antagonists. In other respects, sex and recombination are probably highly disadvantageous: outcrossed sex is expensive because it halves the rate of transmission of genes, while recombination breaks up successful combinations of genes. It is only in certain circumstances that the necessity for continual counter-adaptation will overcome these disadvantages: in particular, the damage (reduction in fitness) caused by an antagonist must be substantial, and the amount of damage must depend on a genetic interaction between the antagonistic species. These requirements are often satisfied by host—parasite systems, where both the ecological and genetic interactions between the antagonists may be very severe and highly specific (see reviews by Day, 1974 and Burdon, 1987). It is possible, therefore, that sex and recombination are maintained in natural populations largely through the dynamics of the coevolution of hosts and their parasites. This is certainly compatible with the major ecological patterns shown by sexual systems, with outcrossed sex being more common in the sea than in freshwater, more common at low than at high latitudes, and generally more common in stable, complex, climax environments where interactions between species are expected to be more frequent and intense (Bell, 1982). However, there is as yet no evidence which conclusively supports a direct causal link between the incidence of parasitism and the rate of recombination. In particular, it has never been demonstrated that a particular parasite has the effect of eliciting, directly or indirectly, a greater rate of genetic recombination in its host. We suggest that such a parasite exists; both the parasite and its effects are well known, but have never been interpreted in the context of the evolution of recombination through host—parasite coevolution. It is in many respects a rather unusual parasite. We shall argue thatB-chromosomes represent highly evolved parasitic DNA, transmitted through the germ line and often eliciting greater rates of recombination in the host genome.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference64 articles.

1. The adaptive significance of B-chromosomes in rye;Moss;Chromosomes Today,1966

2. Effects of B chromosomes on development in grasshopper embryos

3. Supernumerary chromosomes and chiasma distribution in Triticum speltoides

4. Williams P. (1970). Genetical effects of B-chromosomes in Lolium. Ph.D. thesis, University of Wales. (Not seen; cited by Jones & Rees, 1982.)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3