Abstract
AbstractSmall RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host–parasite interface.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献