Mankind and plants: the need to conserve biodiversity

Author:

Bell E. A.

Abstract

SUMMARYOnly green plants can convert the single carbon units of atmospheric carbon dioxide into the multi-carbon organic molecules on which all forms of life depend. Only green plants can provide the oxygen required by man and other aerobic organisms. In addition to his basic need for preformed organic molecules and oxygen, man also depends on plants to provide him, directly or indirectly, with an array of specific compounds such as vitamins and essential amino acids. Inadequate supplies of these may hinder growth and development or give rise to well defined deficiency diseases. At the present time information concerning the distribution and concentrations of such essential nutrients in plants is largely restricted to those plants that are already used as human foods. Nothing or virtually nothing is known about the chemical composition of approximately 250000 wild and little-used species. Amongst these there may be many that could provide us with cheap and plentiful new sources of essential nutrients that could be of enormous benefit to those suffering not only from full-blown deficiency diseases but also suffering sub-normal health due to partial deficiencies. The destruction of much of the world's wilderness areas has already deprived us of the opportunity to evaluate the contributions that a great many plant species might have made towards the elimination of deficiency diseases.Many plants used as human foods contain compounds that are toxic to man. If intake is sufficiently high, these toxins may cause disease. Breeding programmes designed to eliminate toxins from crops species or reduce their concentrations to acceptable levels depend on genetic variability within the species or the possibility of producing hybrids with the desired characteristics. The motor neurone disease, lathyrism, which affects populations in the Indian sub-continent, Africa and China is caused by a toxin in the seeds of Lathyrus sativus. Surveys of cultivated plant populations have shown great variability in toxin levels and such genetic differences make it possible to select and breed toxin-low varieties. The existence of toxin-free species within the same genus has led to research aimed at producing toxin-free hybrids suitable for agricultural use. Approaches, designed to reduce or eliminate diet-related diseases, depend on the maintenance of the greatest possible diversity among both wild and cultivated plant populations. Such diversity is under threat.Some 250 plant species are used as sources of drugs in western medicine. Most of these drugs are obtained from plants whose therapeutic value was recognized long before the compounds were isolated. In the developing countries of the world, it is estimated that 25000 plant species may be used in medicinal preparations. Few of these plants have been studied systematically to determine whether their reputations are justified and if so, the nature of the drugs they contain. If only 0.1 % were to yield useful drugs, they could make a major contribution to human health and welfare. The plants and the indigenous populations who understand their uses are both disappearing and it is a matter of great regret that much that could be of value has been and will be lost.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference8 articles.

1. Neurological diseases in man-are plants to blame?;Bell;Biologist,1988

2. Castanospermine, A 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum australe

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From biodiversity to nature deficiency in human health and disease;Porto Biomedical Journal;2024-01

2. Prospección química del bosque de galería del río Uruguay;Revista Brasileira de Farmacognosia;2008-03

3. Land use change and human health;Ecosystems and Land Use Change;2004

4. Effects on the Natural World: Animals and Plants;Otolaryngology–Head and Neck Surgery;1996-02

5. Biodiversity and human health;Trends in Ecology & Evolution;1995-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3