Population dynamics of snail infection by miracidia

Author:

Anderson R. M.

Abstract

SummaryThe essential biological features of snail infection by miracidia are incorporated into a simple model which describes the rate of change with respect to time of the number of miracidial infections/host. The model is based on the assumption that the net rate of infection is directly proportional to the density of both miracidia and hosts. Empirical evidence is provided to support this assumption. The basic framework of the model is expanded to take into account demographic stochasticity in infection and is used to predict the percentage of snails that become infected after exposure to a known number of miracidia for a set period of time. The influence of miracidial mortalities and age-dependent infectivity are examined and theoretical predictions are compared with a range of experimental results.Underlying heterogeneity in the distribution of the number of infections/snail is shown to generate an artifactual decrease in infection rates as exposure density rises, if rate estimation procedures are based on an assumption of randomness. Empirical evidence is presented to illustrate the generation of over-dispersion in the number of miracidial infections/snail under tightly controlled laboratory conditions, using supposedly homogeneous snail populations.Biological causes for underlying patterns of heterogeneity are discussed in relation to snail susceptibility to infection and ‘attractiveness’ to infective stages.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3