Matrix metalloproteinases mediate the metastatic phenotype ofTheileria annulata-transformed cells

Author:

Adamson R. E.,Hall F. R.

Abstract

SUMMARYTheileria annulatainfects and reversibly transforms bovine leucocytes. The parasite-transformed cells are immortalized, metastatic and express a number of metalloproteinases including matrix metalloproteinase 9 which they secrete. All the metalloproteinases observed on substrate gels are inhibited by tissue inhibitor of metalloproteinase 1 and 4 synthetic inhibitors BB94, GM6001, BRL29808AI and Ro31–4724. We have adapted anin vitroassay for metastatic behaviour that measures the ability of parasitized cells to cross reconstituted basement membrane, Matrigel™. Using this we demonstrated that macroschizont-infected cells are invasivein vitroand that their invasive properties can be almost eliminated by the same specific inhibitors of metalloproteinases as used in the substrate gels. This demonstrates that the metastatic behaviour of the infected cells is due in part to metalloproteinase activity and strongly suggests a role for the metalloproteinases we observed on gels. This is further supported by the fact that an attenuated vaccine line which shows much reduced metalloproteinase activity also exhibits a marked reduction in metastatic behaviour. We suggest that these metalloproteinases are virulence factors mediating some pathological features of the disease and their loss in the vaccine line could provide an explanation for attenuation.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference33 articles.

1. Theileria parva: Reappearance of schizonts in infected lymphoblastoid cells treated with parvaquone is dependent on interleukin 2-like growth factors

2. T cell gelatinases mediate basement membrane transmigration in vitro;Leppert;Journal of Immunology,1995

3. Inhibition by retinoic acid of type IV collagenolysis and invasion through reconstituted basement membrane by metastatic rat mammary adenocarcinoma cells;Nakajima;Cancer Research,1989

4. Peptide hydroxamic acids inhibit skin collagenase

5. Theileria annulata-infected cells produce abundant proteases whose activity is reduced by long-term cell culture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3