Author:
BARTLEY KATHRYN,HUNTLEY JOHN F.,WRIGHT HARRY W.,NATH MINTU,NISBET ALASDAIR J.
Abstract
SUMMARYVaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献