Abstract
AbstractVector-borne parasites are important ecological drivers influencing life-history evolution in birds by increasing host mortality or susceptibility to new diseases. Therefore, understanding why vulnerability to infection varies within a host clade is a crucial task for conservation biology and for understanding macroecological life-history patterns. Here, we studied the relationship of avian life-history traits and climate on the prevalence ofPlasmodiumandParahaemoproteusparasites. We sampled 3569 individual birds belonging to 53 species of the family Thraupidae. Individuals were captured from 2007 to 2018 at 92 locations. We created 2 phylogenetic generalized least-squares models withPlasmodiumandParahaemoproteusprevalence as our response variables, and with the following predictor variables: climate PC1, climate PC2, body size, mixed-species flock participation, incubation period, migration, nest height, foraging height, forest cover, and diet. We found thatParahaemoproteusandPlasmodiumprevalence was higher in species inhabiting open habitats. Tanager species with longer incubation periods had higherParahaemoproteusprevalence as well, and we hypothesize that these longer incubation periods overlap with maximum vector abundances, resulting in a higher probability of infection among adult hosts during their incubation period and among chicks. Lastly, we found thatPlasmodiumprevalence was higher in species without migratory behaviour, with mixed-species flock participation, and with an omnivorous or animal-derived diet. We discuss the consequences of higher infection prevalence in relation to life-history traits in tanagers.
Funder
National Geographic Society
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献