Comparative performance of species richness estimation methods

Author:

WALTHER B. A.,MORAND S.

Abstract

In most real-world contexts the sampling effort needed to attain an accurate estimate of total species richness is excessive. Therefore, methods to estimate total species richness from incomplete collections need to be developed and tested. Using real and computer-simulated parasite data sets, the performances of 9 species richness estimation methods were compared. For all data sets, each estimation method was used to calculate the projected species richness at increasing levels of sampling effort. The performance of each method was evaluated by calculating the bias and precision of its estimates against the known total species richness. Performance was evaluated with increasing sampling effort and across different model communities. For the real data sets, the Chao2 and first-order jackknife estimators performed best. For the simulated data sets, the first-order jackknife estimator performed best at low sampling effort but, with increasing sampling effort, the bootstrap estimator outperformed all other estimators. Estimator performance increased with increasing species richness, aggregation level of individuals among samples and overall population size. Overall, the Chao2 and the first-order jackknife estimation methods performed best and should be used to control for the confounding effects of sampling effort in studies of parasite species richness. Potential uses of and practical problems with species richness estimation methods are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3