A role for rhamnolipid in biofilm dispersion

Author:

Schooling S. R.,Charaf U. K.,Allison D. G.,Gilbert P.

Abstract

Biofilms are often considered as localized zones of high cell density. Quorum sensing provides a means for control of population processes and has been implicated in the regulation of biofilm activities. We present a role for quorum sensing in programmed detachment and dispersal processes. Biofilms of Pseudomonas aeruginosa PAO1 and its isogenic homoserine lactone (HSL) mutant P. aeruginosa PAO-JP2 were grown in batch culture on glass substrata; differences were found in the rate and extent of formation of biofilm. Climax communities were observed for PAO1 at 24 h. These were later accompanied by foaming, a drop in the surface tension of culture media and dispersal of the biofilm, after which no subsequent biofilm accretion occurred. PAO-JP2 cultures reformed biofilm post-detachment and did not foam. Prevention of biofilm reformation in the wild type was related to some component excreted into the culture medium. Rhamnolipid, a biosurfactant regulated by quorum sensing, was detected in PAO1 cultures. When rhamnolipid was added to freshly inoculated substrata, biofilm formation was inhibited. At 20 h, PAO1 biofilms were transferred to medium with added rhamnolipid: biofilm was relatively unaffected. Biofilm events were also studied in medium supplemented with N-butyryl-L-homoserine lactone, which is involved in the regulation of rhamnolipid synthesis. Both strains exhibited similar trends of rapid biofilm formation and dramatic changes in the rate and extent of biofilm accretion. In both cases, there was premature foaming, lowered surface tension and elevated rhamnolipid levels. A role for HSLs in maintenance of biofilm and events leading to dispersion of cells is proposed. This role would encompass dispersion but not necessarily detachment of cells from biofilm and supports a new function for rhamnolipid in pathogenesis, whereby rhamnolipid would promote the dissemination of cells from a nidus of infection.

Publisher

Cambridge University Press (CUP)

Subject

Waste Management and Disposal,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3