Abstract
Four bacterial isolates (Chryseobacterium sp., Pseudomonas fluorescens and two Stenotrophomonas maltophilia isolates) originally isolated from the water system aboard the Mir Space Station were grown in two concentrations of nutrient broth under modeled reduced gravity using clinorotation. Sampling was performed over a 7 day period and planktonic cells were enumerated using 4′,6-diamidino-2-phenylindole (DAPI), while those attached to stainless steel were enumerated using the LIVE/DEAD® BacLight™ kit and DAPI. On some of the sampling days for all the isolates, planktonic cell counts were higher under modeled reduced gravity as compared with the normal gravity controls. In contrast, the number of cells of P. fluorescens and one S. maltophilia isolate attached to the stainless steel disks was higher under modeled reduced gravity as compared with normal gravity, whereas no such differences were observed for Chryseobacterium sp. and the other S. maltophilia isolate. Differences in motility among isolates appeared to influence the growth of planktonic cells under modeled reduced gravity but did not appear to be related to biofilm formation.
Publisher
Cambridge University Press (CUP)
Subject
Waste Management and Disposal,Applied Microbiology and Biotechnology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献