Bacterial survival and biofilm formation on conventional and antibacterial toothbrushes

Author:

Sammons R. L.,Kaur D.,Neal P.

Abstract

The aim of this study was to investigate bacterial survival and biofilm formation on toothbrushes. Fifteen healthy volunteers each used a normal toothbrush and an antibacterial toothbrush of the same design for two separate 5 week periods. Bacteria were removed from the brush head by swabbing and mechanical agitation in 10ml of tryptone soya broth, cultured aerobically on selective and non-selective media, and classified by Gram staining, catalase and oxidase tests. Survival of Staphylococcus epidermidis and Pseudomonas aeruginosa was monitored in the laboratory on both types of brush over 8 days. Scanning electron microscopy was used to observe biofilm formation on antibacterial and conventional brushes used for various times. Numbers of bacteria isolated from conventional and antibacterial brushes from different individuals ranged from 8.3×103 to 4.7×106 and from 1×102 to 1.2×106 colony-forming units/ml, respectively. A larger number of bacteria were isolated from conventional brushes than from antibacterial brushes used by the same individuals but no statistically significant difference was demonstrated. No differences in the relative proportions of Gram-negative and Gram-positive rods or cocci were seen. Staphylococci, presumptive coliforms and pseudomonads were isolated from 48%, 28% and 16% of brushes, respectively. Pseudomonas aeruginosa was viable for at least 4 days on conventional, and 2–3 days on antibacterial, brushes, whilst S. epidermidis survived for 6–8 days on antibacterial and more than 8 days on conventional brushes. Biofilms formed on the heads and bristles of both conventional and antibacterial brushes. Extensive, mixed community biofilms developed after several months of use. We conclude that toothbrushes may be a reservoir of opportunistic pathogens including staphylococci and pseudomonad-like organisms and must be considered as a potential source of haematogenous infections and cross-infection.

Publisher

Cambridge University Press (CUP)

Subject

Waste Management and Disposal,Applied Microbiology and Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3