Author:
Singull Martin,Uwamariya Denise,Yang Xiangfeng
Abstract
AbstractLet
$\mathbf{X}$
be a
$p\times n$
random matrix whose entries are independent and identically distributed real random variables with zero mean and unit variance. We study the limiting behaviors of the 2-normal condition number k(p,n) of
$\mathbf{X}$
in terms of large deviations for large n, with p being fixed or
$p=p(n)\rightarrow\infty$
with
$p(n)=o(n)$
. We propose two main ingredients: (i) to relate the large-deviation probabilities of k(p,n) to those involving n independent and identically distributed random variables, which enables us to consider a quite general distribution of the entries (namely the sub-Gaussian distribution), and (ii) to control, for standard normal entries, the upper tail of k(p,n) using the upper tails of ratios of two independent
$\chi^2$
random variables, which enables us to establish an application in statistical inference.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献