Abstract
AbstractWe consider a continuous Gaussian random field living on a compact set
$T\subset \mathbb{R}^{d}$
. We are interested in designing an asymptotically efficient estimator of the probability that the integral of the exponential of the Gaussian process over T exceeds a large threshold u. We propose an Asmussen–Kroese conditional Monte Carlo type estimator and discuss its asymptotic properties according to the assumptions on the first and second moments of the Gaussian random field. We also provide a simulation study to illustrate its effectiveness and compare its performance with the importance sampling type estimator of Liu and Xu (2014a).
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献