Electron Microscopy of Biological Macromolecules: Bridging the Gap between What Physics Allows and What We Currently Can Get

Author:

Typke Dieter,Downing Kenneth H.,Glaeser Robert M.

Abstract

The resolution achieved in low-dose electron microscopy of biological macromolecules is significantly worse than what can be obtained on the same microscopes with more robust specimens. When two-dimensional crystals are used, it is also apparent that the high-resolution image contrast is much less than what it could be if the images were perfect. Because specimen charging is one factor that might limit the contrast and resolution achieved with biological specimens, we have investigated the use of holey support films that have been coated with a metallic film before depositing specimens onto a thin carbon film that is suspended over the holes. Monolayer crystals of paraffin (C44H90) are used as a test specimen for this work because of the relative ease in imaging Bragg spacings at ∼0.4 nm resolution, the relative ease of measuring the contrast in these images, and the similar degree of radiation sensitivity of these crystals when compared to biological macromolecules. A metallic coating on the surrounding support film does, indeed, produce a significant improvement in the high-resolution contrast for a small fraction of the images. The majority of images show little obvious improvement, however, and even the coated area of the support film continues to show a significant amount of beam-induced movement under low-dose conditions. The fact that the contrast in the best images can be as much as 25%–35% of what it would be in a perfect image is nevertheless encouraging, demonstrating that it should be possible, in principle, to achieve the same performance for every image. Routine data collection of this quality would make it possible to determine the structure of large, macromolecular complexes without the need to grow crystals of these difficult specimen materials.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3