Deep Neural Network Enabled Space Group Identification in EBSD

Author:

Kaufmann KevinORCID,Zhu Chaoyi,Rosengarten Alexander S.,Vecchio Kenneth S.ORCID

Abstract

AbstractElectron backscatter diffraction (EBSD) is one of the primary tools in materials development and analysis. The technique can perform simultaneous analyses at multiple length scales, providing local sub-micron information mapped globally to centimeter scale. Recently, a series of technological revolutions simultaneously increased diffraction pattern quality and collection rate. After collection, current EBSD pattern indexing techniques (whether Hough-based or dictionary pattern matching based) are capable of reliably differentiating between a “user selected” set of phases, if those phases contain sufficiently different crystal structures. EBSD is currently less well suited for the problem of phase identification where the phases in the sample are unknown. A pattern analysis technique capable of phase identification, utilizing the information-rich diffraction patterns potentially coupled with other data, such as EDS-derived chemistry, would enable EBSD to become a high-throughput technique replacing many slower (X-ray diffraction) or more expensive (neutron diffraction) methods. We utilize a machine learning technique to develop a general methodology for the space group classification of diffraction patterns; this is demonstrated within the $\lpar 4/m\comma \;\bar{3}\comma \;\;2/m\rpar$ point group. We evaluate the machine learning algorithm's performance in real-world situations using materials outside the training set, simultaneously elucidating the role of atomic scattering factors, orientation, and pattern quality on classification accuracy.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference60 articles.

1. Phase identification in a scanning electron microscope using backscattered electron Kikuchi patterns

2. Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

3. Texture Analysis with MTEX – Free and Open Source Software Toolbox

4. Bernard, R , Day, J & Chin, E (2019). Strong olivine lattice preferred orientation in brachinite-like achondrites. In Lunar and Planetary Science Conference.

5. Post, JE & Veblen, DR (1990). Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3