Off-Axis STEM or TEM Holography Combined with Four-Dimensional Diffraction Imaging

Author:

Cowley J.M.

Abstract

Ultrahigh-resolution imaging may be achieved using modifications of the off-axis holography scheme in a scanning transmission electron microscopy (STEM) instrument equipped with one or more electrostatic biprisms in the illuminating system. The resolution is governed by the diameter of a reference beam, reduced by channeling through a line of atoms in an atomic-focuser crystal. Alternatively, the off-axis holography may be combined with the Rodenburg method in which a four-dimensional data set is obtained by recording a nanodiffraction pattern from each point of the specimen as the incident beams are scanned. An ultrahigh-resolution image is derived by computer processing to give a particular two-dimensional section of this data set. The large amount of data recording and data processing involved with this method may be avoided if the two-dimensional section is derived by recording the hologram while the four beams produced by two perpendicular biprisms are scanned in opposing directions across the specimen by varying the voltages on the biprisms. An equivalent scheme for conventional TEM is also possible. In each case, the complex transmission function of the specimen may be derived and resolutions of about 0.05 nm may be expected.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multibeam Electron Diffraction;Microscopy and Microanalysis;2020-12-11

2. Diffraction contrast imaging using virtual apertures;Ultramicroscopy;2015-08

3. Non-scanning motionless fluorescence three-dimensional holographic microscopy;Nature Photonics;2008-02-17

4. Technology and metrology of new electronic materials and devices;Nature Nanotechnology;2007-01

5. Metrology Challenges for Emerging Research Devices and Materials;IEEE Transactions on Semiconductor Manufacturing;2006-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3