Measurement of Oxygen Diffusivity and Permeability in Polymers Using Fluorescence Microscopy

Author:

Chowdhury Sanchari,Bhethanabotla Venkat R.,Sen Rajan

Abstract

AbstractA simple fluorescence microscopy technique is developed and presented to investigate heterogeneities in emission intensity and quenching responses of luminescence sensors and to measure diffusion and permeation coefficients of oxygen in polymers. Most luminescence oxygen sensors do not follow linearity of the Stern-Volmer (SV) equation due to heterogeneity of luminophore in the polymer matrix. To circumvent this limitation, inverted fluorescence microscopy is utilized in this work to investigate the SV response of the sensors at the micron scale. It was found that intensity is higher in regions where the luminophore is aggregated, but the response is poorer to oxygen concentration. In contrast, the nearly homogeneous regions exhibit linearity with high SV constants. In these diffusion experiments, oxygen concentration was measured by luminescence changes in regions with high SV constants and good linearity. Two diffusion experiments were performed—termed film-on-sensor and accumulation-in-volume techniques. A new Fick's law based quasi-steady-state diffusion model was developed and combined with the SV equation to obtain effective permeation coefficients for the accumulation-in-volume technique. Using these experimental techniques, oxygen diffusion properties in free-standing Teflon polymer films, cast silicon elastomers, and cast polydimethylsiloxane films containing different weight percentages of zeolite were determined with good precision.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3