Author:
de Jeer Leo T.H.,Ocelík Václav,De Hosson Jeff T.M.
Abstract
AbstractA detailed microstructural evaluation was executed on the crystallographic texture as well as the mechanisms for nucleation, phase transformation, and grain growth in a Al0.7CoCrFeNi high-entropy alloy. The microstructure and crystallographic orientations were characterized by electron backscatter diffraction, and the chemical composition variations by energy-dispersive X-ray spectroscopy. The cast Al0.7CoCrFeNi alloy started in the BCC phase and partially transformed into the FCC phase. It was found that the Pitsch orientation relationship (OR) dominates the nucleation mechanism of the FCC phase; however, deviations with respect to the Pitsch OR are observed and are attributed to the differently sized atoms forming an ordered B2 phase in the alloy causing lattice distortions. The dual phase BCC–FCC microstructure contains FCC Widmanstätten plates oriented parallel to the {110}BCC planes of the parent grain. It was found that the crystal orientation distribution after the BCC–FCC phase transformation is confined and is explained as a product of the governing mechanisms.
Publisher
Cambridge University Press (CUP)
Reference46 articles.
1. A new method for the investigation of orientation relationships in meteoritic plessite
2. Muehlemann, A. & Koumatos, K. (2016). A theoretical investigation of orientation relationships and transformation strains in steels. arXiv:1604.05270 [cond-mat, physics:math-ph]. Available at http://arxiv.org/abs/1604.05270 (retrieved December 22, 2016).
3. The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys
4. X-ray investigation of the mechanism of the transformation from face-centred cubic lattice to body centered cubic;Nishiyama;Sci Rep Tohoku Imp Univ,1934
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献