Introducing and Controlling Water Vapor in Closed-Cell In Situ Electron Microscopy Gas Reactions

Author:

Unocic Kinga A.,Walden Franklin S.,Marthe Nelson L.,Datye Abhaya K.,Bigelow Wilbur C.,Allard Lawrence F.

Abstract

AbstractProtocols for conducting in situ transmission electron microscopy (TEM) reactions using an environmental TEM with dry gases have been well established. However, many important reactions that are relevant to catalysis or high-temperature oxidation occur at atmospheric pressure and are influenced by the presence of water vapor. These experiments necessitate using a closed-cell gas reaction TEM holder. We have developed protocols for introducing and controlling water vapor concentrations in experimental gases from 2% at a full atmosphere to 100% at ~17 Torr, while measuring the gas composition using a residual gas analyzer (RGA) on the return side of the in situ gas reactor holder. Initially, as a model system, cube-shaped MgO crystals were used to help develop the protocols for handling the water vapor injection process and confirming that we could successfully inject water vapor into the gas cell. The interaction of water vapor with MgO triggered surface morphological and chemical changes as a result of the formation of Mg(OH)2, later validated with mass spectra obtained with our RGA system with and without water vapor. Integrating an RGA with an in situ scanning/TEM closed-cell gas reaction system can thus provide critical measurements correlating gas composition with dynamic surface restructuring of materials during reactions.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3