Measurement and Calculation of X-Ray Production Efficiencies for Copper, Zirconium, and Tungsten

Author:

Procop Mathias1ORCID,Terborg Ralf2

Affiliation:

1. Federal Institute for Materials Research and Testing (BAM) Division 6.1 Surface Analysis and Interfacial Chemistry, , Berlin 12205, Germany

2. Bruker Nano GmbH , Am Studio 2D, Berlin 12489, Germany

Abstract

Abstract Electron probe microanalysis (EPMA) is based on physical relations between measured X-ray intensities of characteristic lines and their X-ray production efficiency, which depends on the specimen composition. The quality of the analysis results relies on how realistically the physical relations describe the generation and emission of X-rays. Special experiments are necessary to measure X-ray production efficiencies. A challenge in these experiments is the determination of the detection efficiency of the spectrometer as a function of the photon energy. An energy-dispersive spectrometer was used in this work, for which the efficiency was determined at metrological synchrotron beamlines with an accuracy of ±2%. X-ray production efficiencies for the L series and the Kα series of copper and zirconium and for the M and L series of tungsten were determined at energies up to 30 keV in a scanning electron microscope. These experimental values were compared with calculated X-ray production efficiencies using physical relations and material constants applied in EPMA. The objective of the comparison is the further improvement of EPMA algorithms as well as extending the available database for X-ray production efficiencies. Experimental data for the X-ray production efficiency are also useful for the assessment of spectrum simulation software.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3