The Maximum Separation Cluster Analysis Algorithm for Atom-Probe Tomography: Parameter Determination and Accuracy

Author:

Jägle Eric Aimé,Choi Pyuck-Pa,Raabe Dierk

Abstract

AbstractAtom-probe tomography is a materials characterization method ideally suited for the investigation of clustering and precipitation phenomena. To distinguish the clusters from the surrounding matrix, the maximum separation algorithm is widely employed. However, the results of the cluster analysis strongly depend on the parameters used in the algorithm and hence, a wrong choice of parameters leads to erroneous results, e.g., for the cluster number density, concentration, and size. Here, a new method to determine the optimum value of the parameter dmax is proposed, which relies only on information contained in the measured atom-probe data set. Atom-probe simulations are employed to verify the method and to determine the sensitivity of the maximum separation algorithm to other input parameters. In addition, simulations are used to assess the accuracy of cluster analysis in the presence of trajectory aberrations caused by the local magnification effect. In the case of Cu-rich precipitates (Cu concentration 40–60 at% and radius 0.25–1.0 nm) in a bcc Fe–Si–Cu matrix, it is shown that the error in concentration is below 10 at% and the error in radius is <0.15 nm for all simulated conditions, provided that the correct value for dmax, as determined with the newly proposed method, is employed.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3