Evaluation of In Situ Antiaging Activity in Saccharomyces cerevisiae BY611 Yeast Cells Treated with Polyalthia longifolia Leaf Methanolic Extract (PLME) Using Different Microscopic Approaches: A Morphology-Based Evaluation

Author:

Hemagirri Manisekaran,Sasidharan SreenivasanORCID

Abstract

AbstractPolyalthia longifolia is known for its anti-oxidative properties, which might contribute to the antiaging action. Hence, the current research was conducted to evaluate the antiaging activity of P. longifolia leaf methanolic extract (PLME) in a yeast model based on morphology using microscopic approaches. Saccharomyces cerevisiae BY611 strain yeast cells were treated with 1.00 mg/mL of PLME. The antiaging activity was assessed by determining the replicative lifespan, total lifespan, vacuole morphology by light microscopy, extra-morphology by scanning (SEM), and intra-morphology by transmission (TEM) electron microscopy. The findings demonstrated that PLME treatment significantly accelerated the replicative and total lifespan of the yeast cells. PLME treatment also delays the formation of large apoptotic-like type 3 yeast cell vacuoles. The untreated yeast cells demonstrated aging morphology via SEM analysis, such as shrinking, regional invaginations, and wrinkled cell surface. The TEM analysis revealed the quintessential aging intracellular morphology such as swollen, wrinkled, or damaged vacuole formation of the circular endoplasmic reticulum, a rupture in the nuclear membrane, fragmentation of the nucleus, and complete damaged cytoplasm. Decisively, the present study revealed the vital role of PLME in the induction of antiaging activity in a yeast model using three microscopic approaches—SEM, TEM, and bright-field light microscope.

Funder

Research University Grants from Universiti Sains Malaysia

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Reference59 articles.

1. An ARL1 mutation affected autophagic cell death in yeast, causing a defect in central vacuole formation

2. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease

3. Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a model organism

4. Vacuole Biogenesis in Saccharomyces cerevisiae : Protein Transport Pathways to the Yeast Vacuole

5. Kriofraktograficheskoe issledovanie struktury drozhzhevykh kletok, nakhodiashchikhsia v anabioticheskom sostoianii [Cryofractographic study of the structure of yeast cells found in an anabiotic state];Biriuzova;Mikrobiologiia,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3