Sparse Scanning Electron Microscopy Data Acquisition and Deep Neural Networks for Automated Segmentation in Connectomics

Author:

Potocek Pavel,Trampert Patrick,Peemen Maurice,Schoenmakers Remco,Dahmen Tim

Abstract

AbstractWith the growing importance of three-dimensional and very large field of view imaging, acquisition time becomes a serious bottleneck. Additionally, dose reduction is of importance when imaging material like biological tissue that is sensitive to electron radiation. Random sparse scanning can be used in the combination with image reconstruction techniques to reduce the acquisition time or electron dose in scanning electron microscopy. In this study, we demonstrate a workflow that includes data acquisition on a scanning electron microscope, followed by a sparse image reconstruction based on compressive sensing or alternatively using neural networks. Neuron structures are automatically segmented from the reconstructed images using deep learning techniques. We show that the average dwell time per pixel can be reduced by a factor of 2–3, thereby providing a real-life confirmation of previous results on simulated data in one of the key segmentation applications in connectomics and thus demonstrating the feasibility and benefit of random sparse scanning techniques for a specific real-world scenario.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3