Abstract
AbstractThe integrated differential phase contrast (IDPC) method is useful for generating the potential map of a thin sample. We evaluate theoretically the potential of IDPC imaging for thick samples by varying the focus at different sample thicknesses. Our calculations show that high defocus values result in enhanced anisotropy of the contrast transfer function (CTF) and uninterpretable images, if a quadrant detector is applied. We further show that applying a multi-sector detector can result in an almost isotropic CTF. By sector number-dependent calculations for both Cc/C3-corrected and C3-corrected scanning transmission electron microscopy (STEM), we show that the increase of detector sectors not only removes the anisotropy of the CTF, but also improves image contrast and resolution. For a proof-of-principle IDPC-STEM (uncorrected) experiment, we realize the functionality of a 12-sector detector from a physical quadrant detector and demonstrate the improvement in contrast and resolution on the example of InGaN/GaN quantum well structure.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献