Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater

Author:

Li MengORCID,Xie De-Gang,Zhang Xi-Xiang,Yang Judith C.,Shan Zhi-Wei

Abstract

AbstractAccurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In‐Situ Gas–Solid Interactions;In‐Situ Transmission Electron Microscopy Experiments;2023-05-12

2. Future Vision;In‐Situ Transmission Electron Microscopy Experiments;2023-05-12

3. Uneven Oxidation and Surface Reconstructions on Stepped Cu(100) and Cu(110);Nano Letters;2022-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3