Author:
Sudbrack Chantal K.,Isheim Dieter,Noebe Ronald D.,Jacobson Nathan S.,Seidman David N.
Abstract
The influence of W on the temporal evolution of γ′ precipitation toward equilibrium in a model Ni-Al-Cr alloy is investigated by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). We report on the alloys Ni-10 Al-8.5 Cr (at.%) and Ni-10 Al-8.5 Cr-2 W (at.%), which were aged isothermally in the γ + γ′ two-phase field at 1073 K, for times ranging from 0.25 to 264 h. Spheroidal-shaped γ′ precipitates, 5–15 nm diameter, form during quenching from above the solvus temperature in both alloys at a high number density (∼1023m−3). As γ′ precipitates grow with aging at 1073 K, a transition from spheriodal- to cuboidal-shaped precipitates is observed in both alloys. The elemental partitioning and spatially resolved concentration profiles across the γ′ precipitates are obtained as a function of aging time from three-dimensional atom-by-atom reconstructions. Proximity histogram concentration profiles (Hellman et al., 2000) of the quaternary alloy demonstrate that W concentration gradients exist in γ′ precipitates in the as-quenched and 0.25-h aging states, which disappear after 1 h of aging. The diffusion coefficient of W in γ′ is estimated to be 6.2 × 10−20m2s−1at 1073 K. The W addition decreases the coarsening rate constant, and leads to stronger partitioning of Al to γ′ and Cr to γ.
Publisher
Cambridge University Press (CUP)
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献