Quantitative Mineralogical Properties (Morphology-Chemistry-Structure) of Pharmaceutical Grade Kaolinites and Recommendations to Regulatory Agencies

Author:

Dogan Meral,Dogan A. Umran,Aburub Aktham,Botha Alta,Wurster Dale Eric

Abstract

AbstractThe physical and chemical characteristics of kaolinite (kaolin) may be variable, and minor amounts of other clay minerals, nonclay minerals, and other impurities may affect the properties of kaolinites. Thus specific technical properties of pharmaceutical grade kaolinites become very important because these clays are used in medical applications, e.g., as pharmaceutical excipients, and will be consumed by humans. Seven pharmaceutical grade kaolinite specimens were used in this study: K1004, KA105, 2242-01, K2-500, Acros, Acros-mono, and KX0007-1. In addition, two kaolinites from the Clay Minerals Society Source Clays, KGa-1b and KGa-2, were used for comparison purposes. The Acros-mono and 2242-01 kaolinites contained minor amounts of illite, which was demonstrated both compositionally and structurally by using inductively coupled plasma spectroscopy and powder X-ray diffraction. The KX0007-1 kaolinite powder was found to be heavily contaminated with quartz, cristobalite, and alunite. Crystal structure computations also showed excess Si in its tetrahedral site, and the mineral no longer has the typical kaolinite crystal structure. These widely-used industrial standards should be quantitatively characterized morphologically, compositionally, and structurally. Results of the mineralogical characteristics should be clearly labeled on the pharmaceutical grade kaolinites and reported to the relevant regulatory agencies.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference52 articles.

1. Virta R.L. (2004). Clay and Shale. U.S. Geological Survey. Available at http://minerals.usgs.gov/minerals/pubs/commodity/clays/claysmyb04.pdf.

2. Effect of the crystallinity of kaolinite precursors on the properties of mesoporous silicas

3. Overview — clay mineral applications

4. Baseline Studies of the Clay Minerals Society Source Clays: Geological Origin

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3