Diamond Anvil Cell Partitioning Experiments for Accretion and Core Formation: Testing the Limitations of Electron Microprobe Analysis

Author:

Jennings Eleanor S.ORCID,Wade Jon,Laurenz Vera,Petitgirard Sylvain

Abstract

AbstractMetal–silicate partitioning studies performed in high-pressure, laser-heated diamond anvil cells (DAC) are commonly used to explore element distribution during planetary-scale core–mantle differentiation. The small run-products contain suitable areas for analysis commonly less than tens of microns in diameter and a few microns thick. Because high spatial resolution is required, quantitative chemical analyses of the quenched phases is usually performed by electron probe microanalysis (EPMA). Here, EPMA is being used at its spatial limits, and sample thickness and secondary fluorescence effects must be accounted for. By using simulations and synthetic samples, we assess the validity of these measurements, and find that in most studies DAC sample wafers are sufficiently thick to be characterized at 15 kVacc. Fluorescence from metal-hosted elements will, however, contaminate silicate measurements, and this becomes problematic if the concentration contrast between the two phases is in excess of 100. Element partitioning experiments are potentially compromised; we recommend simulating fluorescence and applying a data correction, if required, to such DAC studies. Other spurious analyses may originate from sources external to the sample, as exemplified by 0.5 to >1 wt% of Cu arising from continuum fluorescence of the Cu TEM grid the sample is typically mounted on.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Earth's “Missing” Chlorine May Be in the Core;Journal of Geophysical Research: Solid Earth;2024-02

2. Scanning electron microscopy, electron probe microanalysis, and electron backscatter diffraction in the geological sciences;Reference Module in Earth Systems and Environmental Sciences;2024

3. The composition of mackinawite;American Mineralogist;2023-07-01

4. The Lithophile Element Budget of Earth's Core;Geochemistry, Geophysics, Geosystems;2022-02

5. The metal–silicate partitioning of carbon during Earth's accretion and its distribution in the early solar system;Earth and Planetary Science Letters;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3