Author:
Roiban Lucian,Sorbier Loïc,Pichon Christophe,Bayle-Guillemaud Pascale,Werckmann Jacques,Drillon Marc,Ersen Ovidiu
Abstract
AbstractA three-dimensional (3D) study of multiphase nanostructures by chemically selective electron tomography combining tomographic approach and energy-filtered imaging is reported. The implementation of this technique at the nanometer scale requires careful procedures for data acquisition, computing, and analysis. Based on the performances of modern transmission electron microscopy equipment and on developments in data processing, electron tomography in the energy-filtered imaging mode is shown to be a very appropriate analysis tool to provide 3D chemical maps at the nanoscale. Two examples highlight the usefulness of analytical electron tomography to investigate inhomogeneous 3D nanostructures, such as multiphase specimens or core-shell nanoparticles. The capability of discerning in a silica-alumina porous particle the two different components is illustrated. A quantitative analysis in the whole specimen and toward the pore surface is reported. This tool is shown to open new perspectives in catalysis by providing a way to characterize precisely 3D nanostructures from a chemical point of view.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献