Direct Visualization of the Earliest Stages of Crystallization

Author:

Singh Manish KumarORCID,Ghosh ChanchalORCID,Miller BenjaminORCID,Carter C. BarryORCID

Abstract

Investigating the earliest stages of crystallization requires the transmission electron microscope (TEM) and is particularly challenging for materials which can be affected by the electron beam. Typically, when imaging at magnifications high enough to observe local crystallinity, the electron beam's current density must be high to produce adequate image contrast. Yet, minimizing the electron dose is necessary to reduce the changes caused by the beam. With the advent of a sensitive, high-speed, direct-detection camera for a TEM that is corrected for spherical aberration, it is possible to probe the early stages of crystallization at the atomic scale. High-quality images with low contrast can now be analyzed using new computing methods. In the present paper, this approach is illustrated for crystallization in a Ge2Sb2Te5 (GST-225) phase-change material which can undergo particularly rapid phase transformations and is sensitive to the electron beam. A thin (20 nm) film of GST-225 has been directly imaged in the TEM and the low-dose images processed using Python scripting to extract details of the nanoscale nuclei. Quantitative analysis of the processed images in a video sequence also allows the growth of such nuclei to be followed.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Study of Crystallization Kinetics and Chemical Changes in Ge4Sb4Te5 through Transmission Electron Microscope;Microscopy and Microanalysis;2024-07

2. In‐Situ Heating;In‐Situ Transmission Electron Microscopy Experiments;2023-05-12

3. Electron beam heating as a tool for fabricating lattice engineered crystals in glass [Invited];Optical Materials Express;2022-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3