Differences in Collagen Fiber Diameter and Waviness between Healthy and Aneurysmal Abdominal Aortas

Author:

Niestrawska Justyna A1ORCID,Pukaluk Anna1,Babu Anju R1,Holzapfel Gerhard A12ORCID

Affiliation:

1. Graz University of Technology Institute of Biomechanics, , Stremayrgasse 16, 8010 Graz, Austria

2. Norwegian University of Science and Technology (NTNU) Department of Structural Engineering, , 7491 Trondheim, Norway

Abstract

Abstract Collagen plays a key role in the strength of aortic walls, so studying micro-structural changes during disease development is critical to better understand collagen reorganization. Second-harmonic generation microscopy is used to obtain images of human aortic collagen in both healthy and diseased states. Methods are being developed in order to efficiently determine the waviness, that is, tortuosity and amplitude, as well as the diameter, orientation, and dispersion of collagen fibers, and bundles in healthy and aneurysmal tissues. The results show layer-specific differences in the collagen of healthy tissues, which decrease in samples of aneurysmal aortic walls. In healthy tissues, the thick collagen bundles of the adventitia are characterized by greater waviness, both in the tortuosity and in the amplitude, compared to the relatively thin and straighter collagen fibers of the media. In contrast, most aneurysmal tissues tend to have a more uniform structure of the aortic wall with no significant difference in collagen diameter between the luminal and abluminal layers. An increase in collagen tortuosity compared to the healthy media is also observed in the aneurysmal luminal layer. The data set provided can help improve related material and multiscale models of aortic walls and aneurysm formation.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3