The Study of Structural Disorder in Spinel by ALCHEMI

Author:

Anderson I.M.

Abstract

The mineral spinel (MgAl2O4) is a candidate material for proposed fusion reactors because of its resistance to structural damage during irradiation. When irradiated to high damage levels, spinel is eventually driven amorphous. However, at lower fluences the nearly cubic close packed arrangement of the oxygen anions remains intact, as indicated by electron diffraction patterns consistent with a face centered cubic Bravais lattice. in this regime, the damage to the material is manifested primarily in the redistribution of the magnesium and aluminum cations among the interstices of the anion sublattice. For ion irradiation, the study of these early stages of damage is well suited to electron beam characterization methods, because the damage is spatially localized at the nearsurface region. Electron diffraction methods have been used for the characterization of cation disorder, but are notoriously unreliable because the similarity in the elastic scattering cross sections offers little discrimination between the magnesium and aluminum cations.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3