Focused Ion Beam Interfaced with a 200 keV Transmission Electron Microscope for In Situ Micropatterning on Semiconductors

Author:

Tanaka Miyoko,Furuya Kazuo,Saito Tetsuya

Abstract

A focused ion beam (FIB) interface attached to a column of 200 keV transmission electron microscope (TEM) was developed for in situ micropatterning to semiconductors. TEM specimens of Si and GaAs, and those of a thin Ni2Si layer on a Si substrate were micromilled in the TEM during observation. A set of 6 x 6-um squares and alphabet letters were patterned with a 25 keV Ga+-FIB of 0.2-μm beam diameter at room temperature. The effect of FIB irradiation on the structural evolution was observed simultaneously by a TV-rate video camera and sequentially by regular film. FIB micropatterning to semiconductor specimens caused amorphization and Ga injection. The excess Ga in the specimens precipitated as metastable solid γ-phase for Si and as liquid phase for GaAs. Ni2Si/Si specimens lost silicide crystallinity after FIB patterning. Annealing of these bilayer specimens at 673K resulted in the precipitation of Ni-rich silicide.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2019-07

2. In Situ Transmission Electron Microscopy;Springer Handbook of Microscopy;2019

3. Transmission electron microscopy with in situ ion irradiation;Journal of Materials Research;2015-02-10

4. A review of transmission electron microscopes with in situ ion irradiation;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2009-12

5. In situ Transmission Electron Microscopy Investigation of Radiation Effects;Journal of Materials Research;2005-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3